Prediction Of Supersonic Laminar Flow Separation By The Method Of Integral Relations With Free Interaction.
Report Number: AFFDL TR 69-87
Author(s): Kuhn, Gary D., Nielsen, Jack N., Goodwin, Frederick K.
Corporate Author(s): Nielsen Engineering And Research Inc Palo Alto Calif
Laboratory: Air Force Flight Dynamics Laboratory
Date of Publication: 1970-01
Pages: 104
Contract: F33615-68_c-1499
DoD Project: 8219
DoD Task: 821902
Identifier: AD0702104
Abstract:
The report describes the development of a predictive method for calculating separated laminar boundary layers on flat-plate-wedge and cylinder-flare configurations in supersonic flow and the application of the method to predicting the effects of Mach number, Reynolds number, and temperature ratio on the properties of the boundary layer. The purpose of the report is to extend previous analytical work employing the method of integral relations to the region downstream of reattachment and to describe an interative technique developed to produce a unique solution. The theory is shown to produce good comparisons with pressure data on flat-plate-wedge configurations for both adiabatic and cold walls. Accounting for non-Blasius initial velocity profiles produced by favorable pressure gradients upstream of the beginning of interaction was shown to decrease the predicted extent of separation. For axisymmetric configurations the length of an equivalent cylinder must be calculated by an auxiliary method. Good to fair comparisons with experimental pressure distributions were produced by adjusting the equivalent cylinder length. Fair comparison was produced between the theory and experimental heat-transfer rate data on an ogive-cylinder-flare configuration. The theory is shown to predict an incipient separation wedge angle which agrees reasonably well with experimental results.
Provenance: Lockheed Martin Missiles & Fire Control
Author(s): Kuhn, Gary D., Nielsen, Jack N., Goodwin, Frederick K.
Corporate Author(s): Nielsen Engineering And Research Inc Palo Alto Calif
Laboratory: Air Force Flight Dynamics Laboratory
Date of Publication: 1970-01
Pages: 104
Contract: F33615-68_c-1499
DoD Project: 8219
DoD Task: 821902
Identifier: AD0702104
Abstract:
The report describes the development of a predictive method for calculating separated laminar boundary layers on flat-plate-wedge and cylinder-flare configurations in supersonic flow and the application of the method to predicting the effects of Mach number, Reynolds number, and temperature ratio on the properties of the boundary layer. The purpose of the report is to extend previous analytical work employing the method of integral relations to the region downstream of reattachment and to describe an interative technique developed to produce a unique solution. The theory is shown to produce good comparisons with pressure data on flat-plate-wedge configurations for both adiabatic and cold walls. Accounting for non-Blasius initial velocity profiles produced by favorable pressure gradients upstream of the beginning of interaction was shown to decrease the predicted extent of separation. For axisymmetric configurations the length of an equivalent cylinder must be calculated by an auxiliary method. Good to fair comparisons with experimental pressure distributions were produced by adjusting the equivalent cylinder length. Fair comparison was produced between the theory and experimental heat-transfer rate data on an ogive-cylinder-flare configuration. The theory is shown to predict an incipient separation wedge angle which agrees reasonably well with experimental results.
Provenance: Lockheed Martin Missiles & Fire Control