Three-Dimensional Nozzle Design for Maximum Thrust. Volume I. Theoretical Development and Results

Download this report (PDF, 3.32 MB, 180 pages)
Report Number: AFAPL TR 70-79 Volume 1
Author(s): Snyder, Lynn E,, Thompson, H. Doyle
Corporate Author(s): Purdue University Jet Propulsion Center
Laboratory: Air Force Aero Propulsion Laboratory
Date of Publication: 1970-10-28
Pages: 180
Contract: F33615-67-C-1068
DoD Project: None Given
Identifier: AD0878642

Abstract:
The problem of designing three-dimensional (nonaxisymmetric) supersonic nozzles which produce the maximum axial thrust for a prescribed upstream flow field, mass flow rate, exit lip shape and position, and ambient pressure was formulated and numerically solved. The formulation was written to consider a three-dimensional, supersonic, isoenergetic, homentropic flow of a perfect gas. The axial thrust and mass flow rate were written as integrals over a control surface which was constrained to pass through the exit lip of the nozzle. The functional to be maximized was formed by summing the integral equation for the axial thrust and the integral equation for the mass flow rate times a Lagrange multiplier. The fixed length and fixed ambient pressure constraints were imposed by substitution into the variational problem. The numerical solution technique was programmed for the CDC 6500 computer. The results confirm that the three-dimensional optimal nozzles designed using this technique are significantly better than three-dimensional nozzles that have identical initial conditions and have comparable overall dimensions. Furthermore, the results show that two-dimensional or axisymmetric methods are not adequate for designing three-dimensional optimum nozzles.

Provenance: Lockheed Martin Missiles & Fire Control

Other options for obtaining this report:

Via the Defense Technical Information Center (DTIC):
A record for this report, and possibly a pdf download of the report, exists at DTIC

Via National Technical Report Library:
The NTRL Order Number for this report is: AD878642
A record for this report, and possibly a pdf download of the report, exists at NTRL

Indications of Public Availability
No digital image of an index entry indicating public availability is currently available
There has been no verification of an indication of public availability from an inside cover statement